

Sparse Attention Network For Session-based Recommendation

Jiahao Yuan,¹ Zihan Song,¹ Mingyou Sun,¹ Xiaoling Wang,^{1, 2}* Wayne Xin Zhao³ ¹ Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China ² Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, China ³ Gaoling School of Artificial Intelligence, Renmin University of China {jhyuan, zhsong, mysun}@stu.ecnu.edu.cn, xlwang@cs.ecnu.edu.cn, batmanfly@gmail.com

AAAI 2021 Code: https://github.com/SamHaoYuan/DSANForAAAI2021



Reported by liang li

Details:

- One is to regard the last-click as the query vector to denote the user's current preference.
- And the other is to consider that all items within the session are favorable for the final result, including the effect of unrelated items (i.e., spurious user behaviors)

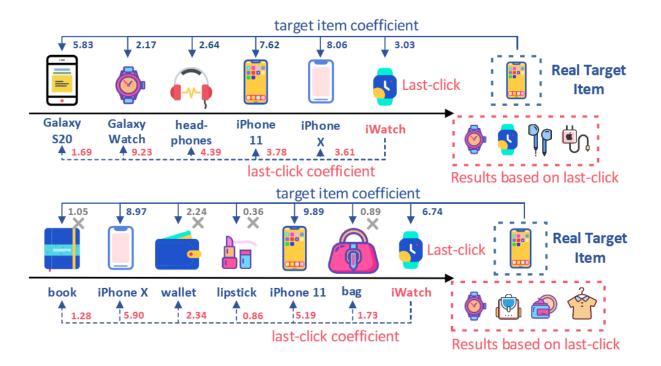
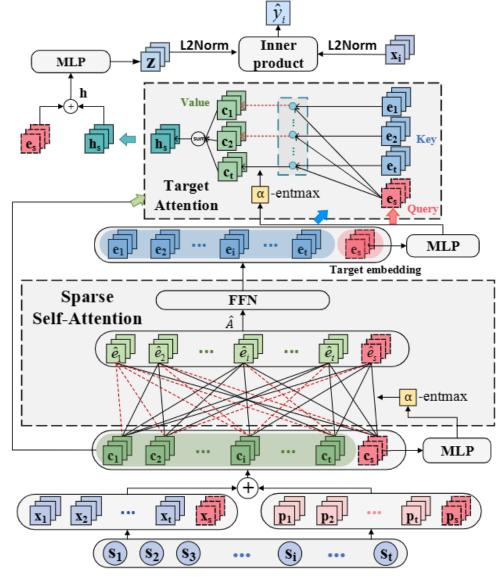


Figure 1: Motivating examples of session-based recommendation. This paper aims to directly model the real target item representation and alleviate the impact of unrelated items.

Problem Statement

 S_t

ATA Advanced Technique of Artificial Intelligence



$$I = \{i_1, i_2, ..., i_m\}$$

$$S = \{s_1, s_2, ..., s_n\}$$

$$s_p \in I$$

$$= \{s_1, s_2, ..., s_t\}(1 < t < n)$$

Figure 3: The general architecture of the proposed model. The red dot line indicates a possible zero weight value.

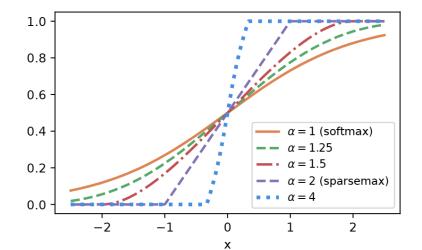
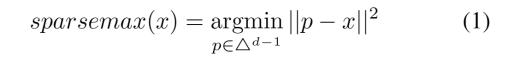


Figure 2: Illustration of α -entmax in the two-dimensional case.



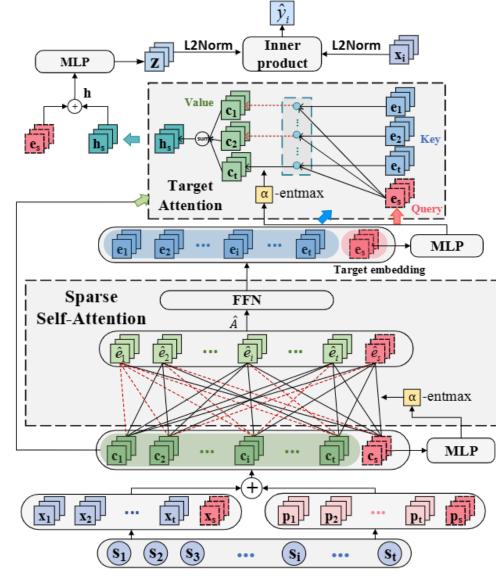
$$\alpha \operatorname{-entmax}(x) = \operatorname{argmax}_{p \in \Delta^{d-1}} p^T x + H^T_{\alpha}(p), where$$
$$H^T_{\alpha}(p) = \begin{cases} \frac{1}{\alpha(\alpha - 1)} \sum_j (p_j - p_j^{\alpha}), & \alpha \neq 1 \\ H^S(p), & \alpha = 1 \end{cases}$$
(2)

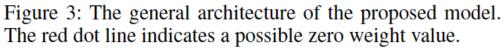
	Origin	Sparse
Softmax	$p_i = \tfrac{e^{s_i}}{\sum\limits_{j=1}^n e^{s_j}}$	$\mathrm{p_i} = \left\{ egin{array}{c} \displaystyle rac{\mathrm{e}^{\mathrm{s_i}}}{\displaystyle\sum\limits_{\mathrm{j}\in\Omega_k}\mathrm{e}^{\mathrm{s_j}}},\mathrm{i}\in\Omega_k \ 0,\mathrm{i} otin\Omega_k \end{array} ight.$

$$\Delta^{d-1} = \{ p \in \mathbb{R}^d | 1^T p = 1, p \ge 0 \}$$

where x is the input vector and p is the output vector.

其中 Ω_k 是将s₁, s₂,..., s_n从大到小排列后前k个元素的下标集合。说白了,苏剑林大佬提出的Sparse Softmax就是在计算概率的时候, 只保留前k个,后面的直接置零,k是人为选择的超参数





$$c_{i} = Concat(x_{i}, p_{i})$$

$$\hat{C} = \{c_{1}, c_{2}, ..., c_{t}, c_{s}\}$$

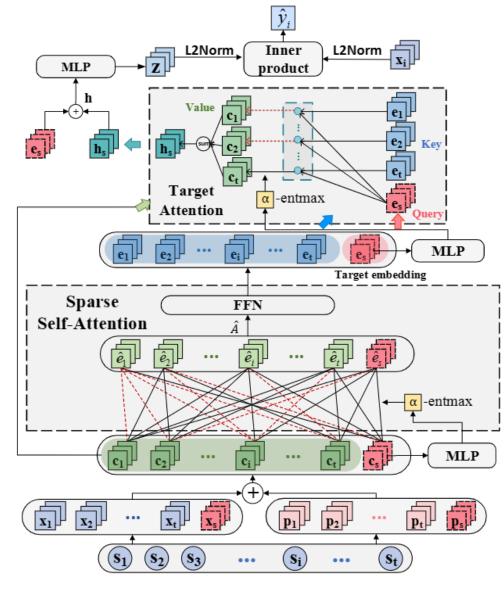
$$\hat{A} = \alpha \text{-entmax}\left(\frac{QK^{T}}{\sqrt{2d}}\right)V$$

$$\alpha = \sigma(W_{\alpha}c_{s} + b_{\alpha}) + 1$$
(3)
(4)
(5)

$$Q = f(\hat{C}W^Q + b^Q) \tag{6}$$

$$FFN(\hat{A}) = \max(0, \hat{A}W_1^{self} + b_1)W_2^{self} + b_2 \quad (7)$$
$$E = SAN(\hat{C}) \quad (8)$$

Ι



$$\beta_{p} = \alpha \operatorname{entmax}(W_{0}f(W_{1}e_{p} + W_{2}e_{s} + b_{a})) \qquad (9)$$

$$\alpha = \sigma(W_{\alpha}e_{s} + b_{\alpha}) + 1. \qquad (10)$$

$$h_{s} = \sum_{p=1}\beta_{p}c_{p}$$

$$h = Concat(e_{s}, h_{s}) \qquad (11)$$

$$\hat{z} = f(W_{z}h + b_{z}) \qquad (11)$$

$$\hat{z} = w_{k}L2Norm(z), \ \hat{x_{i}} = L2Norm(x_{i}) \qquad (12)$$

$$\hat{y_{i}} = softmax(\hat{z}^{T}\hat{x_{i}}) \qquad (12)$$

$$L(y, \hat{y}) = -\sum_{i=1}^{m} y_i \log(\hat{y}_i)$$
 (13)

Figure 3: The general architecture of the proposed model. The red dot line indicates a possible zero weight value.

Datesets	# train	# test	# clicks	# items
Diginetica	526,135	44,279	858,108	40,840
Retailrocket	433,648	15,132	710,586	36,968

Table 1: Statistics of datasets used in the experiments

Datasets	Diginetica			Retailrocket				
Metrics	HR@10	HR@20	MRR@10	MRR@20	HR@10	HR@20	MRR@10	MRR@20
S-POP	0.2389	0.2409	0.1392	0.1393	0.3578	0.3803	0.2468	0.2481
FPMC	0.1807	0.2571	0.0713	0.0765	0.2599	0.3237	0.1338	0.1382
SKNN	0.3661	0.4835	0.1561	0.1649	0.4674	0.5428	0.2593	0.2646
STAN	<u>0.3820</u>	0.4993	0.1678	0.1759	0.4656	0.5348	0.2633	0.2681
GRU4Rec	0.2617	0.3927	0.0969	0.1059	0.3835	0.4401	0.2327	0.2367
STAMP	0.3349	0.4647	0.1399	0.1489	0.4295	0.5096	0.2461	0.2517
SR-GNN	0.3772	0.5050	0.1675	0.1763	0.4321	0.5032	0.2607	0.2657
GC-SAN	0.3786	<u>0.5084</u>	<u>0.1689</u>	<u>0.1779</u>	0.4410	0.5118	0.2692	<u>0.2740</u>
Bert4Rec	0.3461	0.4878	0.1327	0.1425	0.4585	0.5419	0.2584	0.2642
CoSAN	0.3475	0.4834	0.1429	0.1522	0.4381	0.5247	0.2380	0.2440
DSAN	0.4029*	0.5376*	0.1805*	0.1899 *	0.4905*	0.5654*	0.3021*	0.3074*
Improv.	5.47%	5.74%	6.87%	6.75%	4.75%	3.78%	10.70%	11.28%

Table 2: Performance of all recommendation models. The boldface is the best result over all methods, the underline is the best result of all baselines, and * denotes the significant difference for t-test.

Datesets	DIGIN	NETICA	RETAILROCKET		
Metrics	HR@20	MRR@20	HR@20	MRR@20	
DSAN-NS	0.5199	0.1858	0.5322	0.3000	
DSAN-NT	0.5348	0.1838	0.5646	0.3040	
DSAN-DA	0.5340	0.1876	0.5600	0.3010	
DSAN	0.5376	0.1899	0.5654	0.3074	

Table 3: Impacts of the dual attention network.

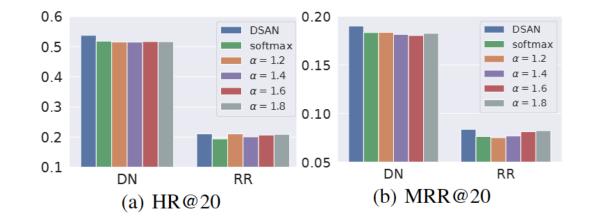


Figure 4: Experimental results with different transformation function on two metrics.

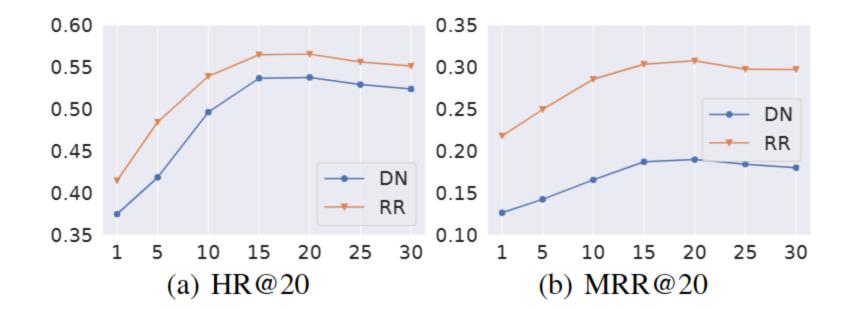


Figure 5: Performance with different normalized weight w_k .

Thanks